OOP: Type-bound Procedures and
Inheritance in Fortran 2003

Tom Clune :::

SIVO Fortran 2003 Series :.
May 6, 2008

Logistics

e Materials for this series can be found at

Contains slides and source code examples.
Latest materials may only be ready at-the-last-minute.

e Please be courteous:

Remote attendees should use “*6” to toggle the mute. This
will minimize background noise for other attendees.

4/22/08 OOP Inheritance 2

Outline

e Variables as Objects
Type-bound procedures
Invocation of methods
Operators
Constructors
Final procedures

e Type Extension and Inheritance
Extends attribute
Abstract Types
Abstract Interfaces
Deferred procedures

4/22/08 OOP Inheritance

Type-bound Procedures

e Or “Procedures Bound to a Type by Name”

e Allows a Fortran subroutine or procedure to be treated as a
method on an object of the given type.
call object % method(..)
X = object % func(..)
which is equivalent to
call method(object, ..)
x = func(object, ..)
e This syntax encourages an object-oriented style of programming
that can improve clarity in some contexts.

e Procedures can also be bound by type to operators: [=, +, efc.]
e Restrictions
Cannot be used with SEQUENCE types.

4/22/08 OOP Inheritance 4

Type-bound Syntax

e The following example defines a derived type with 2 type bound
procedures compute () and retrieve()

type myType
real :: value
contains
procedure :: compute
procedure :: retrieve

end type myType

e Type-bound procedures must be module procedures or external
procedures with explicit interfaces.

e By default type-bound names are public, but each entity in a
type (including components) can be have a PUBLIC/PRIVATE
attribute.

4/22/08 OOP Inheritance 5

Type-bound Procedures

e Specific type-bound procedures

Syntax
procedure [(interface-name) | [[,bind-attr-1ist]
] tbp—-name [=>procedure—-name]

where bind-attr-1ist 1isoneof
access-spec (publicorprivate)
deferred
nopass
non overridable

pass [(arg—name)]
(interface—-name) if and only if de ferred attribute

non overridable => cannot be overridden during type extension

4/22/08 OOP Inheritance 6

(X ¥)
o060
o0
Full | :
module myType mod
PriV?te subroutine reset(variable)
public :: myType class(mytype) :: variable
type myType i
variable%myvalue = 0.0
real :: myValue(4) = 0.0 _
] end subroutine reset
contains end module myType mod
procedure :: write YIYPe_
procedure :: reset
end type myType
contains .
subroutine write (this, unit) Usage
class (mytype) :: this
integer, optional :: unit use mytype_mOd
if (present(unit)) then
write (unit, *) this % myValue type (mYType) :: var
else
print *, this%myvalue
endif))
end subroutine write mytype call Var%wrlte(unlt=6)
call var % reset()

4/22/08

OOP Inheritance

Passed-object dummy arg

e By default, type-bound procedures pass the object as the first
argument.

Can override behavior with NOPASS attribute:
procedure, NOPASS :: method

call thing % method(..) ! No object is passed

Can also specify which argument is to be associated with the

passed-object with the PASS attribute:
procedure, PASS(obj) :: method

subroutine method(x,0bj,Vy)

call thing % method(x, y) ! Thing is 2nd obj.

The default can be explicitly confirmed by
procedure, PASS :: method

e Strongly recommend that you always use the default.

4/22/08 OOP Inheritance 8

Renaming and Generic

e Type-bound procedures can specify an alternative
public name using a mechanism analagous to that for
the module ONLY clause:

procedure :: write => writelInternal

e Similarly, an external name can be overloaded for
multiple interfaces with the GENERIC statement:

type myType

contains
procedure :: addInteger
procedure :: addReal

generic ::add=>addInteger,addReal
end type

4/22/08 OOP Inheritance 9

Type-bound Operators

Syntax is through the GENERIC statement:
type SomeType

contains
GENERIC :: OPERATOR(+) => myAdd
GENERIC :: OPERATOR(=) => myAssign
end type
type (SomeType) :: a, b, c

a =b + c¢c ! Invokes myAdd, then myAssign

4/22/08 OOP Inheritance 10

Structure Constructors

e [0 support object oriented programming, F2003 has
iIntroduced more general structure constructors

e A generic name may the same as a derived type name

Allows standard OO style where class constructors use the
same name as that of the class itself.

Default constructor accepts an argument for each public
component

Requires any/all private components to have default initial values.

User may overload generic name to provide multiple means
for constructing objects of a given type.

4/22/08 OOP Inheritance 11

Finalizers

e A derived type may have ‘final subroutines bound to it.

Designated with FINAL keyword
type T
contains
FINAL :: cleanUp
end type
Intent is to clean-up when objects cease to exist (l.e. go out of
scope).
Usually this involves deallocating components of a derived type
Potentially eliminates issues related to memory leaks.

e Note: FINAL routines are always available regardless of
PUBLIC/PRIVATE designation

Invoked automatically not by user code!
Can catch developers off guard.

4/22/08 OOP Inheritance 12

Finalizers cont’d

e Sole dummy argument cannot be INTENT(OUT)
e Can overload for multiple ranks - or use ELEMENTAL

e A derived type is finalizable if it has any final
subroutines or has components that are finalizable

Final subroutines only deal with those components which are
not themselves finalizable.

4/22/08 OOP Inheritance 13

Inheritance

e Fortran 2003 introduces OQOP inheritance via the EXTENDS
attribute for user defined types.
Implementation is restricted to single inheritance

Inheritance always forms hierarchical trees.

No “diamond” patterns which can happen in C++
Implementation is designed to be efficient such that offsets for
components and type-bound procedures can be computed at
compile time. (“single lookup”)

o With type extension, a developer may add new
components and type-bound procedures to an existing
derived type even without access to the source code for

that type.

4/22/08 OOP Inheritance 14

Inheritance terminology

e A type is considered to be extensible if it is:

Not a SEQUENCE type
Not BIND(C)

e An extensible type without the EXTENDS attribute is considered to be
a ‘base type’.

Base types need not have any components.
Extension need not add any components.

e A type with the EXTENDS attribute is said to be an extended type.

4/22/08

‘Parent type’ is used for the type from which the extension is made.

All the components, and bound procedures of the parent type are
inherited by the extended type and they are known by the same
names.

An extended type can be a parent for yet another type, and so on.

OOP Inheritance 15

Syntax for Extends

type Location2D

real :: latitude, longitude
end type Location2D ¢/////,,,__ Parent type
type, EXTENDS (Location2D) :: Location3D

real :: pressureHeight
end type Location3D

type (Location3D) :: location

lat = location % latitude

lon = location % longitude

height = location % pressureHeight

4/22/08 OOP Inheritance 16

The Parent Component

e Every extended type has an implicit component
associated with the parent type
The component name is the type name of the parent.
Provides multiple mechanisms to access components in

parent type
e From the previous example we could do:
type(Location2D) :: latLon

latLon = location % Location2D
lat = location % Location2D % latitude

4/22/08 OOP Inheritance 17

Extends and Type-bound

e [ype-bound procedures in the parent may be invoked
within extended types.

e Extended types may add additional type-bound
procedures in the natural fashion.

e An extended type can override a type-bound
procedure in the parent - specifying new behavior in
the extended type.

The keyword NON OVERRIDABLE can be used to prohibit
extended classes from overriding behavior:
procedure, NON OVERRIDABLE :: foo

4/22/08 OOP Inheritance 18

Overriding Example

type Square
real :: length

contains
procedure :: area => squareArea
end type Square

type, extends(Square) :: rectangle
real :: width

contains
procedure :: area => rectangleArea
end type Rectangler

Real function squareArea(this)
squareArea = (this % length) ** 2

Real function rectangleArea(this)
rectangleArea = (this % length) * (this % width)

4/22/08 OOP Inheritance 19

Abstract Types

e |t is often useful to have a base type that declares
methods (type-bound procedures) that are not
Implemented except in extended classes.

e Fortran 2003 uses the ABSTRACT attribute to denote
such a type.

The DEFERRED attribute is used for those methods which are
not to be implemented.

Requires a template or abstract interfac
No variables can be declared to be of an abstract type.

4/22/08 OOP Inheritance 20

Abstract Example

type, ABSTRACT :: AbstractShape
contains
procedure (Arealnterface), DEFERRED :: area

end type AbstractShape

abstract interface
subroutine AreaInterface(obj)
import AbstractShape
class (AbstractShape) :: obj
end subroutine ArealInterface

end interface

4/22/08 OOP Inheritance 21

Abstract Example cont’d

type, extends(AbstractShape) :: Square
real :: length
contains

procedure :: area => squareArea !
Provide concrete

end type Square

4/22/08 OOP Inheritance 22

Supported features

e Generaly, IBM XLF and NAG F95 support the majority
of the features presented here.

e 95, gfortran generally support none of these yet.

4/22/08 OOP Inheritance 23

Pitfalls and Best Practices

e Type-bound procedures:

Always use the first argument (the default) as the object
argument for type-bound procedures.

Use a standardized name for the object argument such as
“this” or “self” to increase clarity.

4/22/08 OOP Inheritance 24

Resources

SIVO Fortran 2003 series:

Questions to Modeling Guru:
SIVO code examples on Modeling Guru
Fortran 2003 standard:

John Reid summary:

Newsgroups

Mailing list

4/22/08 OOP Inheritance

25

Next Fortran 2003 Session

e OOP: Polymorphism in Fortran 2003
e Tom Clune will present

e Tuesday, May 20, 2008

e B28-E210 @ 12:00 noon

